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419. Remarks on the Use of the Logarithmic Head Correction 
in Viscometry. 

By GUY BARR. 
MANY authors” have directed attention to the error that may arise in the calculation of 
viscosities from the rates of flow through a capillary tube, when the flow occurs under a 
gradually diminishing head, and the arithmetic mean of the initial and the final head is 
taken for insertion into Poiseuille’s formula. The simplest expression for the correct 
mean value H is obtained when the discharge is from a vessel of constant cross-section 
either into the air or into a second vessel of constant cross-section : in this case, if the arith- 
metic mean head be h and the difference between the initial and the final head be 2x, 

. . . . . . .  H = 2x/[log,(h + x ) / ( ~ z  - x)] (1) 
This value for H is often called the ‘ I  Meissner head,” since it was dcctuced by Meissner 
for the Engler viscometer, or the I ‘  logarithmic head,” from the form of the denominator. 
The I ‘  logarithmic head correction ” is (h - H). 

1. Approximate Equations f o r  the Logarithpiaic Head-Even when the construction 
of a viscometer is such that equation (1) is applicable, the evaluation of H requires the use 
of a table of logarithms, and when x/h is small a 5-figure table will be quite inadequate 
for any reasonable accuracy. Glass instruments very rarely have cylindrical vessels a t  
each end of the capillary, the bulbs being approximately spherical, biconical (Bingharn), 
fusiform, or else cylindrical with conical ends (British Standards Institution). An 
expression for the case of a spherical bulb with discharge into air has been given by Barr, 
and results for certain other forms are listed below. In  practice, however, the bulbs of 
viscometers are not exactly of any simple geometrical shape; if an accurate value for H 
is required, it is thus necessary to make h so large compared with x that the correction 
(12 - H )  is either negligibly small or roughly calculable. In these circumstances, it is 
desirable that the correction be expressed in a form which allows it to be estimated with 
less trouble than is necessary for evaluating the forrnulz resulting from integration. 
Approximate values may be obtained by expanding the logarithm that occurs in each of 
the exact solutions : for certain conditions it has proved more convenient to make the 
approximation before the integration, but in either case the result is in the form of a series 
of terms involving ascending powers of xlh. We put x/h =f, and assume that f is small 
compared with unity. 

For the conditions under which equation (1) holds, we find 
1 H(1 -I- g f 2  + if4 + . .  .) = h . . . . . .  

For a sphere of radius x ,  with discharge into air or into a recipient of infinite area, 

H = 4f3h/[6f- 3(1 -f2)loge(l +f)/(l - f ) ]  - . (2) 
whence, approximately, 

1 3 H(l + sf2 + $%f* + . .  .) = li . . . . . .  (2a) 

For a bulb that has the form of a pair of opposed coiies, each of a height equal to the 
radius of the common base, discharging into air, or for such a bulb discharging symmetric- 
ally into a similar one, as in Bingham’s viscometer : 

2 
3 H = -f3F./[(l + f2) loge (1 + f > m  - f> + 2floge (1 - f 2 )  - 2fl * (3) 

whence, approximately, 
l + , , f 2 + % f 4 + .  1 1 . . ) = h .  . . . .  ( 3 4  

* References to  these and to  other authors cited below are given in the author’s I ‘  Monograph of 
Viscometry ” (Oxford University Press, 1931). 



1794 Barr : Remarks on thte Use of the 

For a biconical bulb, as in (3), discharging into a cylinder of radius equal to the maximum 
radius of the cones 

H ( l  + 0-144f2 + . .  .) = h . . . . . . .  (4a) 
When the bulb consists of a cylinder with a cone at  each end, the radius and height of 

the cylinder being equal to the height of each cone, and the discharge is into a cylinder of 
the same radius, 

. .  . . . . . . .  H ( 1  + 0.190p + .) = h ( 4 4  
For a bulb of similar shape, except that the height of the cylinder is twice the height 

and maximum radius of the cones, discharging into a cylinder of the same radius, 

. .  . . . . . . .  H ( l  + 0.222j2 + .) = h ( 4 4  
Bulbs approximating to those of (4b) and (4c) are specified for the viscometers standardised 
by the British Standards Institution. 

The approximations indicate, very much more clearly than the exact solutions, the 
influence of the shape of the bulb on the magnitude of the correction. The difference 
(h  - H )  is naturally a maximum when the “ bulb ” from which the discharge occurs 
is a cylinder, and decreases as the influence of the upper and the lower end is reduced by 
making their volume a smaller fraction of the total. For a given ratio of x to h, the cor- 
rection increases, except in case (l), as the diameter of the recipient cylinder is reduced 
(cf. 3a and 4a). 

The logarithmic head correction is important (i) when external pressures are applied 
and H has to be estimated from the values of the constant external pressure and the vary- 
ing hydrostatic pressure in the viscometer, and (ii) when it is necessary to derive H from 
the dimensions of the apparatus, e.g., in the use of “ consistometers ” of the burette type 
(Cooke, Auerbach, et al.). Comparison of equations ( l a )  and (3a) shows that the external 
pressure need not be so large a multiple of the hydrostatic pressure as was suggested by 
Bingham, Schlesinger, and Coleman in order to make the correction negligible in the use 
of Bingham’s viscometer. The approximation ( l a )  will serve to  indicate at what stage 
during the discharge of a consistometer it is desirable to make use of the exact equation (1).  

2. Application of the Correction in the Standardisation of Ostwald Viscometers.--In the 
normal use of viscometers of the Ostwald type for measurements of relative kinematic 
viscosities, the “ logarithmic head ” is a constant of the apparatus and does not need to be 
evaluated. The method introduced by Gruneisen for determining the minimum time of flow 
that is proportional to the kinematic viscosity (without the application of a kinetic-energy 
correction) consists in finding the “ logarithmic head,” h,, experimentally from observations 
of the time-intervals corresponding with various stages during the discharge, and then 
measuring the times of flow of water when the mean head is modified by applying different 
external pressures he. It is assumed that, so long as the kinetic-energy correction is 
negligible, the product ht or (h, + he)t of the time of flow and the effective head will remain 
constant. But it is clear from equation (Za) that, if the bulb be spherical and the kinetic- 
energy correction be negligible throughout the series, the time of flow to when no external 
pressure is applied will appear to be unduly long, the product (h, + he)t being greater by 
20f2y0 than that obtained when the applied head has been increased until (x/h)2 has become 
negligibly small. The practical effect is to increase the mean value derived for ht, so that 
the range of usefulness of the viscometer will be under-estimated. 

Bury’s procedure (J. , 1934, 1380) avoids the experimental difficulty associated with the 
estimation of the “ logarithmic head ” by using a new graphical method to represent the 
results of the flow tests a t  different heads. He assumes that with a given filling the equations 
v = ah,to - bitu = a(h, + he)t - b/t  will hold, whence &/(to - t )  = h, + b/(at,t); he 
therefore plots values of he/(to - t )  , calculated from the observations of the times of flow t 
corresponding with different values of he against 1/t ,  and draws the best straight line 
through the points. The slope of this straight line gives b/(ato) and from this, knowing the 
time to corresponding with no external head, it is possible to find b by making use of an 
approximate value of a deduced from a calibration with a liquid of known kinematic 
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viscosity V. The method depends, however, like that of Griineisen, on the assumed con- 
stancy of h, : Bury remarks that for all ordinary Ostwald viscometers the increase with 
he is very small. Equation (2a) shows that the increase might amount to 0.23% for the 
instrument he describes, a spherical measuring bulb and a large recipient bulb being 
assumed; introduction of the correction would have led to the deduction of a value of 
b some 5% greater than that given by Bury. The capillary of his viscometer was so narrow 
that such an error was of negligible importance-in fact, the coefficient might have been 
calculated from the dimensions with sufficient accuracy. If, however, the kinetic-energy 
correction is considerable, and particularly if the length of the bulb is not a very small 
fraction of the mean head, it will be essential to apply the logarithmic head correction to 
each of the observations. Bury’s method appears to be a great improvement over that of 
Griineisen, since it not only reduces the experimental work but also affords a determination 
of b instead of merely finding a range within which it is permissible to assume that b = 0. 
It is suggested that a few of the observations of flow time with different external heads 
should first be plotted as recommended by Bury to find an approximate value for h,. 
Knowing the volume and, roughly, the shape of the bulb and the area of the recipient, 
it is then possible to estimate the logarithmic head corrections A,, and An to the head h, 
and to the various values of h, + he. (If the bulb of Bury’s instrument were made up of 
two right-angled cones, A. would be 0.18% instead of the 0.23% cited above for a sphere.) 
Introduction of the corrections indicates that 

(he - An + A,)/(t - to) = h, - A, + b/(atto) . . . . . (5) 
so that, when the values of the expression on the left are plotted against ljt, a straight line 
should be obtained intersecting the axis of ordinates a t  h, - A, and having a slope of 
tanb1 b/(at,). If the kinematic viscosity v be known, then 

v = ~ ( h o  - A0)tO -- b/t, . . . . . . . . (6) 
or a = v/((h0 - A,)t, - b/(at,)) . . . . . . . ( 6 4  
Both terms of the denominator in (6a)  are known, so the calibration constants in equation 
(6) may be evaluated. 

3. Use of the Correction in the Examination of “ Abnormal ’’ Liquids.-External pressures 
have often been applied to viscometers of the Ostwald type when it was desired to investigate 
the possibility of deviations from Poiseuille’s law in the flow of colloidal solutions or sus- 
pensions. Wo. Ostwald and Fohre avoided the errors that may occur in the estimation 
of h, and of the mean effective pressures acting when external pressures are added, by cali- 
brating the instrument for each case by means of a flow test with a normal liquid. 
Abnormality is then shown by a decrease in the relative time of flow as the pressure is 
increased. The procedure advocated by Bury, modified as suggested above, may well 
be used to check the calibration data, which should give points lying on a straight line 
when this method of plotting is adopted : it will then be safe to interpolate flow times for 
the normal liquid at pressures other than those actually used in the calibration. When the 
viscosity of the liquid under examination is so high that it is inconvenient, or impossible, 
t o  make a satisfactory preliminary calibration with a liquid that is known to obey Poiseuille’s 
law, the best use will be made of the data relating flow times to applied pressure if the 
mean effective pressures are corrected as in equations (2)-(42). 
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